Существует несколько формул для вычисления площади треугольника. Рассмотрим те, что изучаются в школе.
Первая формула вытекает из формулы площади параллелограмма и предлагается учащимся в виде теоремы: площадь треугольника равна половине произведения его основания на высоту.
Доказательство: пусть S – площадь треугольника АВС (см. рис. 5). Примем сторону АВ за основание треугольника и проведем высоту СН. Докажем, что
.
Достроим треугольник АВС до параллелограмма АВDС так, как показано на рисунке 5:
Треугольники АВС и DСВ равны по трем сторонам (ВС – их общая сторона, АВ=СD и АС=ВD как противоположные стороны АВСD), поэтому их площади равны. Следовательно, площадь S треугольника АВС равна половине площади параллелограмма АВСD, то есть
. Теорема доказана.
Важно обратить внимание учащихся на два следствия, вытекающих из данной теоремы. А именно:
1) площадь прямоугольного треугольника равна половине произведения его катетов.
2) если высоты двух треугольников равны, то их площади относятся как основания.
Эти два следствия играют важную роль в решении разного рода задач. С опорой на данную доказывается еще одна теорема, имеющая широкое применение при решении задач: если угол одного треугольника равен углу другого треугольника, то их площади относятся как произведения сторон, заключающих равные углы.
Доказательство: пусть S и S1 – площади треугольников АВС и А1В1С1, у которых углы А и А1 равны (см. рис. 6).

Докажем, что
Наложим треугольник А1В1С1 на треугольник АВС так, чтобы вершина А1 совместилась с вершиной А, а стороны А1В1 и А1С1 наложились соответственно на лучи АВ и АС. Треугольники АВС и АВ1С имеют общую высоту СН, поэтому
Треугольники АВ1С и АВ1С1 также имеют общую высоту - В1Н1, поэтому
Перемножая полученные равенства, находим:
или
. Теорема доказана.
Вторая формула тоже связана с параллелограммом: Площадь треугольника равна половине произведения двух его сторон на синус угла между ними. Существует несколько способов доказательства этой формулы и один из них – достраивание треугольника до параллелограмма.
Докажем, что
. Достроим треугольник АВС до параллелограмма АВDС (см, рис. 7)
Треугольники АВС и DСВ равны по трем сторонам (ВС – общая сторона, АВ=DС, АС=DВ как противолежащие стороны параллелограмма). Площадь параллелограмма можно найти по формуле
. Тогда по основным свойствам площади площадь треугольника АВС равна
. Что и требовалось доказать.
Третья формула для площади треугольника – формула Герона названа так в честь древнегреческого ученого Герона Александрийского, жившего в первом веке нашей эры. Эта формула позволяет находить площадь треугольника, зная его стороны. Эта формула удобна тем, что позволяет не делать никаких дополнительных построений и не измерять углов. Ее вывод основывается на второй из рассмотренных нами формул площади треугольника и теореме косинусов:
Информация по педагогике:
Общие требования к компьютерным обучающим программам
На сегодняшний день мы стали свидетелями появления огромного количества обучающих программ психологически и дидактически отстраненных от предмета обучения. Поэтому разработка дидактических требований к компьютерным обучающим программам продолжает являться одной из наиболее актуальных проблем компью ...
Организация самостоятельной работы студентов на уроке математики
Главная задача каждого преподавателя дать студентам на только сумму знаний, но и научить их учиться. Механическая работа на уроке, приводящая к ничтожному напряжению мысли, мало полезна. И поэтому важной задачей для преподавателя является научить студентов самостоятельно приобретать знания, а этого ...
Профессиональные качества педагога профессионального
обучения, по направлению «Машиностроение и технологическое оборудование»
В соответствии с государственным образовательным стандартом высшего профессионального образования педагог профессионального обучения обеспечивает приобретение профессии по программам начального профессионального образования учащимися образовательных учреждений. Объектами профессиональной деятельнос ...
Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.