Эстетический потенциал математики как науки

Страница 3

Неожиданные открытия, обнаруженные математиками, удивляли многие столетия людей своей красотой и вдохновляли на новые исследования. Говоря словами Г.В. Лейбница, "нет ничего более важного, как обнаружить источники нового открытия. Это, на мой взгляд, интереснее самих открытий". Мы еще раз убеждаемся в ценности элементов истории математики для развития учащихся. В этом случае учитель вместе с учениками может рассматривать новый материал, как никому раннее неизвестный, тем самым происходит новое открытие на уровне каждого ученика в отдельности.

Каждый год видим такую картину: от класса к классу интерес к изучению предмета математики у учащихся не возрастает, как хотелось бы, а наобо7рот, уменьшается, что влечет за собой и ухудшение успеваемости. Кроме воспитательного значения исторических сведений, учителя математики подчеркивают, что история математики повышает интерес учащихся к предмету, к изучению все новых и новых, усложняющихся тем программы. О развитии интереса к предмету при помощи истории математики говорить нужно много и основательно, поэтому мы не затронем в этой статье возникшей новой проблемы.

Из наблюдений за преподаванием истории математики в школе видим, что наиболее часто применяемыми методическими приемами сообщения исторических сведений являются следующие: рассказ учителя, эвристическая беседа, проблемное изложение, лекция, исследовательская работа учеников. Мы выделяем еще один прием, который заключается в решении той или иной задачи различными методами, не исключая существовавших ранее, может быть даже и ошибочных. А также прием выполнения одного математического действия различным образом. Например, при изучении темы умножения десятичных или обыкновенных дробей школьникам в 6 классе можно показать приемы умножения дробей старорусским и другими способами. Н.Н. Круликовский отмечает, что эффективным методом сообщения исторических сведений по математике может быть решение задач из классических и старинных сборников задач. При изучении признаков деления на 2, 3, 5, 10 и т.д. можно показать ученикам признак Паскаля. Затем можно будет сказать, что признаки делимости чисел на 2, 3, 5 и 10 - это частные случаи признака Паскаля.

Согласно Н.Н. Круликовскому, считаем, что ознакомление учащихся с элементами истории математики с целью воспитания должно проходить, прежде всего, на уроках математики. Многолетний опыт исследования данной темы показывает, что освещать историю математики даже в самом кратком виде не предоставляется возможным. Поэтому будем говорить только о сообщении учащимся лишь некоторых сведений из истории науки. Из нестандартным форм сообщения исторических ведений науки математики Н.Я. Виленкин выделяет уроки истории математики, которые проводятся в конце изучения каждой темы. Материал к этим урокам он располагает в учебнике в конце разделов.

Мы вводим в практику нетрадиционный прием сообщения сведений из истории математики - нетрадиционные домашние исследовательские задания. Почти исчезли из обихода русские старинные названия мер длины и веса. Ученики на лето обычно из крупных городов разъезжаются к родственникам, бабушкам и дедушкам, которые живут в деревнях, поселках и просто маленьких городках. Из их обихода эти устаревшие слова еще не вышли. За лето ученики могут выполнить специальное задание - составить словарь по старинным мерам длины по рассказам бабушек и дедушек. А во время урока по теме "Измерение отрезков" могут поделиться с остальными своими словарями и позабавить одноклассников различными интересными названиями, такими как сажень, вершок, аршин. Учитель в этом случае подтвердит сказанное школьниками и расскажет, чему в настоящее время равны эти величины. Интересно будет измерить кабинет математики пядями, локтями и шагами. А также исторический материал может стать индивидуальным средством обучения школьников математике.

Страницы: 1 2 3 4

Информация по педагогике:

Проблемное обучение
В основе проблемного обучения лежит идея известного отечественного психолога С.Л,Рубинштейна, о способе развития сознания человека через разрешение познавательных проблем, содержащих в себе противоречия. Поэтому проблемное обучение раскрывается через постановку (учителем) и разрешение (учеником) пр ...

Законы и принципы управления на примере МОУ «Гимназия №164» г.Зеленогорска
Муниципальное общеобразовательное учреждение «Гимназия №164» (МОУ «Гимназия №164») расположено по адресу: Красноярский край, г.Зеленогорск, ул. Советская, 5А. Директор – Губанова Надежда Николаевна. Образовательный комплекс состоит из: - школы трех ступеней образования: начальной, средней и старшей ...

Познавательные способности и особенности их формирования в младшем школьном возрасте
Познавательные способности человека - это свойство мозга изучать и анализировать окружающую действительность, находя способы применения полученной информации на практике. Познание - сложный и многоуровневый процесс. Можно выделить четыре основных аспекта, формирующих познавательный процесс и отвеча ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2020 - All Rights Reserved - www.easilyeducation.ru