Действие умножения рассматривается как суммирование одинаковых слагаемых. А также умножение – это математическое действие, посредством которого из двух чисел (или величин) получается новое число (или величина), которое (для целых чисел) содержит слагаемым первое число столько раз, сколько единиц во втором.
По определению умножение целых неотрицательных чисел (натуральных) — это действие, выполняющееся по следующим правилам:
a*b=a + a + a + a + a + … + a,
при
b > 1
b
слагаемых
a
* 1 =
a
,
при
b
= 1
a
* 0 = 0,
при
b
= 0
Использование символики умножения позволяет сократить запись сложения одинаковых слагаемых.
Запись вида 2*4 = 8 подразумевает сокращение записи вида 2 + 2 + 2 + 2 = 8. Ее читают так: «по 2 взять 4 раза, получится 8»; или: «2 умножить на 4 получится 8».
Действие умножения во всех учебниках математики для начальных классов рассматривают ранее действия деления.
С теоретико-множественной точки зрения умножению соответствуют такие предметные действия с совокупностями (множествами, группами предметов) как объединение равных (равночисленных) совокупностей. Поэтому, прежде чем знакомиться с символикой записи действий и вычислениями результатов действий, ребенок должен научиться моделировать на предметных совокупностях все эти ситуации, понимать (т. е. правильно представлять) их со слов учителя, уметь показывать руками как процесс, так и результат предметного действия, а затем характеризовать их словесно.
Табличное умножение
Изучение таблицы умножения является центральной задачей обучения математике во 2 и 3 классе.
Знание табличных случаев должно быть доведено до автоматизма, так как только в этом случае учащиеся смогут успешно справиться с устными вычислениями при умножении и делении двузначного числа на однозначное, при делении двузначного числа на двузначное, а также с письменными случаями умножения и деления. Но это не значит, что дети должны механически зубрить готовые таблицы. Речь идет о формировании сознательных навыков, основанных на понимании смысла действий умножения и деления; на умении применять переместительное свойство умножения; на усвоении взаимосвязи между компонентами - и результатом действия умножения.
К табличному умножению относят случаи умножения однозначных натуральных чисел на однозначные натуральные числа, результаты которых находят на основе конкретного смысла действия умножения (находят суммы одинаковых слагаемых).
Результаты табличного умножения в соответствии с программными требованиями к знаниям, умениям и навыкам дети должны знать наизусть.
Первые приемы составления таблиц умножения связаны со смыслом действия умножения. Результаты этих таблиц получают последовательным сложением одинаковых слагаемых.
Например:
Умножение числа 2
Вычисли и запомни: ☺ ☺
2 + 2 2 * 2 ☺ ☺
2 + 2 + 2 2 * 3 ☺ ☺
2 + 2 + 2 + 2 2 * 4 ☺ ☺
2 + 2 + 2 + 2 + 2 2 * 5 ☺ ☺
Расположенный рядом рисунок помогает ребенку получить результат пересчетом фигурок. При небольших значениях множителей прием сосчитывания для получения табличного значения произведения вполне' приемлем, и учитель им часто пользуется при получении результатов таблиц значений умножения чисел 2, 3, 4. Приведенный пример показывает, что этот прием удобен лишь при небольших значениях второго множителя.
При значении второго множителя больше 5, удобнее использовать для получения результатов табличных значений другой прием: прием прибавления к предыдущему результату.
Например:
Вычисли и запомни:
2*6 = 2*5 + 2 = .
2*7 = 2*6 + 2 = …
2*8 = 2*7 + 2 = …
2*9 = 2*8 + 2 = .
Аналогичным образом составляется таблица значений умножения числа 3.
Следующим приемом, на основе которого составляются таблицы значений умножения чисел, является прием перестановки множителей.
Этот прием фактически является первым математическим законом относительно действия умножения в начальной школе:
От перестановки множителей произведение не меняется.
Способ знакомства детей с этим правилом (законом) обусловлен ранее введенным смыслом действия умножения. Используя предметные модели множеств, дети сосчитывают результаты группировки их элементов разными способами, убеждаясь, что результаты не меняются от изменения способов группировки.
Например: ☺ ☻ 2 * 3 = 6
☺ ☻ 3 * 2 = 6
☺ ☻
Счет элементов рисунка (множества) парами по горизонтали совпадает со счетом элементов тройками по вертикали. Рассмотрение нескольких вариантов подобных случаев дает учителю основание произвести индуктивное обобщение (т. е. обобщение нескольких частных случаев в обобщенном правиле) о том, что перестановка множителей не меняет значение произведения.
Информация по педагогике:
Виды обучения
Существует множество подходов к классификации видов обучения. В реферате будут рассмотрены три из них: традиционное, дистанционное и развивающее обучение. Этот вид обучения является самым (на сегодняшний день) распространенным и представляет собой обучение знаниям, умениям и навыкам по схеме: изуче ...
Требования к речи учащихся
Развивая речь учащихся, школа придерживается ряда совершенно ясных, четко определенных характеристик речи, к которым следует стремиться и которые служат критериями оценки ученических устных и письменных высказываний. Во-первых, это требование содержательности. Рассказ или сочинение должны быть пост ...
Уровень развития способностей как один из основных
критериев дифференциации
Наиболее значимым для успешной организации обучения является такое свойство учащихся, как способности, в частности уровень умственного развития учащегося. У большинства авторов это понятие охватывает как предпосылки к учению (обучаемость), так и приобретённые знания (обученность). Способностями воо ...
Дистанционное обучение
Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.