При изучении окружности древние греки обнаружили задачу, ставшую затем символом неразрешимой проблемы. Это задача квадратуры круга, т.е. построения квадрата, равновеликого данному кругу, с использованием лишь циркуля и линейки. Попытки древнегреческих ученых решить задачу о квадратуре круга путем проведения прямых и окружностей так и не увенчались успехом. Эту задачу не могли решить математики на протяжении более двух тысячелетий. Лишь в 19 веке усилиями нескольких выдающихся математиков – Ламберта, Лиувилля, Эрмита и Вейерштрасса – была установлена неразрешимость этой задачи, невозможность такого построения. Было предложено много приближенных решений. Неразрешимыми оказались и задача трисекции угла – деления данного угла на три равные части с помощью циркуля и линейки, и задача удвоения куба – построения ребра куба, объем которого вдвое больше объема данного куба.
Изыскание все новых и новых способов решения задачи о трисекции угла показало, что эта задача тесно примыкает к задачам алгебры и тригонометрии. Так, еще в XV в. самаркандский ученый ал-Каши применил трисекцию угла к составлению весьма точных тригонометрических таблиц, нужных для вычислительной математики и астрономии. Применяя прием приближенного численного решения кубического уравнения, он по известному значению sin 3° производит вычисление sin 1°. Далее, в XVI в. знаменитый французский математик Ф. Виет на основе трисекции угла находит тригонометрическое решение кубического уравнения в так называемом неприводимом случае.
Весьма оригинальные, но довольно сложные способы решения задачи о трисекции угла дали ученые Декарт, Ньютон, Клеро, Шаль и др. Все эти решения обычно основаны на отыскании точек пересечения конического сечения с окружностью. Попытки найти новые решения задачи о трисекции угла продолжаются и в настоящее время (например, при помощи номографии).
Еще в 1755 г. Парижская академия наук ввиду бесплодности усилий математиков, а еще более нематематиков, пытавшихся решить знаменитые задачи древности, вынесла решение впредь не принимать на рассмотрение работы, касающиеся квадратуры круга, а также трисекции угла и удвоения куба. Это несколько охладило пыл «квадратурщиков».
Знаменитые задачи древности представляют большой интерес для изучения, т.к. имеют очень простые формулировки, но, тем не менее, не могут быть решены при помощи циркуля и линейки без привлечения дополнительных средств.
Информация по педагогике:
Педставления умственно отсталого ребенка о природе
Ориентация дошкольного учреждения на общечеловеческие ценности значительно меняет приоритеты в воспитании, направляя основное внимание на комплексное развитие личности ребенка. Одной из важнейших составляющих этого процесса является осознание ребенком законов окружающего мира природы и способах ...
Методические рекомендации по организации изучения
дисциплины
Моделирование и исследование электрических цепей и устройств с установкой параметров реальных устройств, используемых в лабораторном практикуме, а также с установкой параметров, приводящих к аварийным режимам, недопустимым в реальном эксперименте. Рекомендуется проводить в компьютерном классе. Прак ...
Основные теоретические концепции медиаобразования
«Психолого-педагогический словарь» определяет медиаобразование (от английского media education и латинского media) как «направление в педагогике, выступающее за изучение школьниками закономерностей массовой коммуникации. Основная задача медиаобразования – подготовить новое поколение к жизни в совре ...
Дистанционное обучение
Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.