Общая характеристика знаменитых задач древности

При изучении окружности древние греки обнаружили задачу, ставшую затем символом неразрешимой проблемы. Это задача квадратуры круга, т.е. построения квадрата, равновеликого данному кругу, с использованием лишь циркуля и линейки. Попытки древнегреческих ученых решить задачу о квадратуре круга путем проведения прямых и окружностей так и не увенчались успехом. Эту задачу не могли решить математики на протяжении более двух тысячелетий. Лишь в 19 веке усилиями нескольких выдающихся математиков – Ламберта, Лиувилля, Эрмита и Вейерштрасса – была установлена неразрешимость этой задачи, невозможность такого построения. Было предложено много приближенных решений. Неразрешимыми оказались и задача трисекции угла – деления данного угла на три равные части с помощью циркуля и линейки, и задача удвоения куба – построения ребра куба, объем которого вдвое больше объема данного куба.

Изыскание все новых и новых способов решения задачи о трисекции угла показало, что эта задача тесно примыкает к задачам алгебры и тригонометрии. Так, еще в XV в. самаркандский ученый ал-Каши применил трисекцию угла к составлению весьма точных тригонометрических таблиц, нужных для вычислительной математики и астрономии. Применяя прием приближенного численного решения кубического уравнения, он по известному значению sin 3° производит вычисление sin 1°. Далее, в XVI в. знаменитый французский математик Ф. Виет на основе трисекции угла находит тригонометрическое решение кубического уравнения в так называемом неприводимом случае.

Весьма оригинальные, но довольно сложные способы решения задачи о трисекции угла дали ученые Декарт, Ньютон, Клеро, Шаль и др. Все эти решения обычно основаны на отыскании точек пересечения конического сечения с окружностью. Попытки найти новые решения задачи о трисекции угла продолжаются и в настоящее время (например, при помощи номографии).

Еще в 1755 г. Парижская академия наук ввиду бесплодности усилий математиков, а еще более нематематиков, пытавшихся решить знаменитые задачи древности, вынесла решение впредь не принимать на рассмотрение работы, касающиеся квадратуры круга, а также трисекции угла и удвоения куба. Это несколько охладило пыл «квадратурщиков».

Знаменитые задачи древности представляют большой интерес для изучения, т.к. имеют очень простые формулировки, но, тем не менее, не могут быть решены при помощи циркуля и линейки без привлечения дополнительных средств.

Информация по педагогике:

Анализ проблемы взаимодействия в практике работы школ
Описание базы исследования: 1 класс МОУ «НОШ №2» города Магнитогорска. В исследовании приняли участие 28 учащихся. Сроки исследования: учебный год 2009, сентябрь-март. В соответствии с выдвинутой гипотезой «Психолого-педагогические приемы взаимодействия, используемые в учебно-воспитательном процесс ...

Современный этап развития ИКТ
В настоящее время большинство преподавателей и студентов владеют навыками работы на компьютере, но уровень владения этими навыками (и это подтверждают результаты анкетирования преподавателей и интервью с деканами) очень различен. Это создает сложности как в обучении студентов, так и в интеграции ИК ...

Характеристика и состав испытуемых
Экспериментально-практическое изучение особенностей навыка чтения у младших школьников с ОНР проводилось нами на базе МОУ СОШ с. Ленинское, Ленинского района, Еврейской Автономной области, в 2010 – 2011 учебном году. Основную группу (ОГ) составили 10 учащихся первых классов в возрасте 7-8 лет, имев ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2019 - All Rights Reserved - www.easilyeducation.ru