Понятие множества является одним из основных понятий математики и поэтому не определяется через другие. Его поясняют на примерах. Так, можно говорить о множестве букв в некотором слове, о множестве однозначных чисел.
Объекты, из которых образуется множество, называют его элементами.
В математике изучают не только те или иные множества, но и связи, отношения между ними.
Если множества А и В имеют общие элементы, т.е. элементы принадлежащие одновременно А и В, то говорят, что эти множества пересекаются. Если множества не имеют общих элементов, то говорят, что они не пересекаются.
Если каждый элемент множества В является элементом множества А, то говорят, что В – подмножество А, и пишется ВÌ А.
Множество В называется подмножеством множества А, если каждый элемент множества В является также элементом множества А. пустое множество является подмножеством любого множества (Æ Ì А). любое множество является подмножеством самого себя (А Ì А).
Продолжим рассмотрение отношений между множествами. Если каждый элемент множества В является элементом множества А и, наоборот, каждый элемент множества А является элементом множества В, то говорят, что множества А и В равны, и пишут: А=В.
Множества А и В называются равными, если А Ì В и В Ì А.
Из определения равных множеств вытекает, что равные множества состоят из одних и тех же элементов и порядок записи элементов множества не существен.
Все пустые множества равны.
Отношения между множествами наглядно можно представить с помощью кругов Эйлера. В том случае, если множества А и В имеют общие элементы, но не одно из них не является подмножеством другого, их изображают так, как это показано на рисунке 1.
рисунок 1.
Непересекающиеся множества А и В представляют при помощи двух кругов, не имеющих общих точек (рис.2).
рисунок 2.
Если множество В является подмножеством А, то круг, изображающий множество В, целиком помещается в круг, изображающий множество А (рис.3).
рисунок 3.
Равные множества представляют в виде одного круга (рис.4).
рисунок 4.
В математике часто приходится решать задачи, которые связаны с нахождением общих элементов двух или более совокупностей или с объединением нескольких совокупностей в одну. Обобщением таких ситуаций являются операции пересечения и объединения множеств.
Пересечением множеств А и В называется множество, состоящее из тех или только этих элементов, которые принадлежат как множеству А, так и множеству В.
Пересечение любых множеств А и В всегда существует и оно единственно.
Если представить множества А и В при помощи кругов Эйлера, то пересечение данных множеств изобразится закрашенной областью (рис.5).
рисунок 5.
В том случае, когда множества А и В не имеют общих элементов, то говорят, что их пересечение пусто и пишут: А Ç В = Æ.
Операция, при помощи которой находят пересечение множеств, называется так же пересечением.
Объединением множеств А и В называется множество, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из множеств Аи В.
Объединение любых множеств А и В всегда существует, и оно единственно.
Объединение множеств А и В обозначают: А È В.
Если представить множества А и В при помощи кругов Эйлера, то объединение данных множеств изобразится закрашенной областью (рис.6).
рисунок 6.
Операция, при помощи которой находят объединение множеств, называется также объединением.
Информация по педагогике:
История появления гончарного ремесла
Археологические находки во многих древнерусских городах свидетельствуют о широком развитии на Руси гончарного ремесла. В Древней Руси применяли большей частью двухъярусные (нижний, топочный ярус зарывали в землю), гончарные горны, но были и одноярусные.Слова «посуда» еще не было в Древней Руси. То, ...
Неблагоприятные факторы, воздействующие на ребенка, связанные с детскими учреждениями
Школа, составляющая социальную среду, в которой дети находятся в течение значительной части времени, нередко создает для них психологические трудности. Для детей школа оказывается причиной четырех комплексов проблем. Первый из них связан с поступлением в школу и возникает из-за перехода от игры к т ...
Н.К. Крупская о дошкольном воспитании
В своем первом произведении — «Женщина-работница» (1899) — Надежда Константиновна пишет о тяжелом положении трудящейся матери в дореволюционной России. В капиталистическом обществе мать, занятая на работе, не может уделить необходимое время воспитанию своего ребенка. «Итак, мы видим,— подчеркивает ...
Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.