Современное состояние проблемы изучения элементов теории множеств в начальном курсе математики

Образование и педагогика » Изучение элементов теории множеств в начальном курсе обучения математике » Современное состояние проблемы изучения элементов теории множеств в начальном курсе математики

Страница 2

Общий подход к операциям над числами и буквенная запись свойств этих операций позволяет раскрыть перед учащимися общность текстовых задач, имеющих внешне различные фабулы, но единое математическое содержание. Учащийся, усвоивший, что всегда a-(b+c)=a-b-c, не затруднится применить это правило и для решения задач про яблоки, и про длины отрезков, и при отыскания площадей. Тем самым в неявном виде дети усваивают идею изоморфизма математических моделей, что создает условия для разъяснения им роли и значения математического метода исследования реального мира.

Работа с учебником «Математика-3» проводится по программе четырехлетней начальной школы в 3-м классе.

Одновременно с развитием числовой линии и линии текстовых задач дети знакомятся с множествами и операциями над ними, с истинными и ложными высказываниями, учатся выделять зависимые характеристики процессов и строить формулы зависимостей между величинами.

В 3 классе вводится понятие «множество» и «элементы множества». Изучение множеств подготовлено изучением в 1 классе свойств совокупностей предметов и действий над ними. Этот материал здесь повторяется на новом, более высоком уровне. Однако следует иметь в виду, что множества и рассмотренные ранее «мешки» (мультимножества) имеют некоторое отличие.

Работа по изучению нового материала организованна следующим образом.

В №1, стр. 1 учащиеся подбирают название для различных объединений объектов: коллекций марок, набор карандашей, стая птиц, чайный сервиз, букет цветов, стадо коров. Тогда вводится термин множество, как слово, позволяющую выразить идею объединения любой совокупности предметов в одно целое можно сказать: множество марок, множество карандашей, множество птиц и т.д.

Так же на этом уроке вводится понятие «элементы множества». В заданиях №4 - 10 стр. 2 - 3 закрепляются и отрабатываются понятия множества и его элементы.

На 2 уроке учащиеся знакомятся с обозначением множеств, рассматривают различные способы задания множеств перечислением и общим свойством его элементов.

В заданиях №5 - 7, стр. 5 надо сопоставить эти 2 способа задания множеств. Например: №6, стр. 5 задайте множество общим свойством его элементов.

а) {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}

А - множество

б) {0; 2; 4; 6; 8}

В – множество _

в) {а; я; у; ю; э; е; о; ё; ы; и}

С – множество _

№7, стр. 5 задайте множество перечислением.

а) А – множество букв в слове «крот».

б) В – множество нечетных однозначных чисел.

в) С – множество двузначных чисел кратных 10.

г) D – множество трехзначных чисел, больших 603, но меньших 608.

На 3 уроке рассматривается понятие равенства множеств. Формируются представление о пустом множестве и его обозначении. Смысл понятия равенства раскрывается в №1-7, стр. 7-8. важно, чтобы, выполняя их, учащиеся обосновывали свои убеждения, а непросто называли их. Например, №3, стр. 8

а) { □; ●; ○; ■; ▲; ∆} = {●; ○; ∆; ▲; ■; □} первое равенство верно, так как оба множества состоят из одних и тех же элементов, но записаны в разном порядке.

б) {●; ○; ∆;□} = {●;○; □} второе равенство неверно, поскольку множестве, записанном слева, лишний элемент «треугольник».

в) {∆; ○; □; ■} ≠ {∆; □; ○; ●} третье равенство верно, так как черный квадрат из первого множества поменялся на черный круг, и, значит, множества не равны.

В №8 – 19 стр. 8 отрабатываются понятия пустого множества. Дети должны обратить внимание на правильный наклон черты в его записи и на то, что это множество записывается без скобок Æ.

На 4 уроке происходит знакомство детей с графическим изображением множества – диаграмма Венна. Формируются способности к использованию знаков Î и Ï для обозначения принадлежности элемента множеству.

Диаграмма Венна позволяет наглядно иллюстрировать операции над множествами и их свойства, решать самые разнообразные задачи. Этот материал отрабатывается в №2 – 6, стр. 10 – 11.

Страницы: 1 2 3

Информация по педагогике:

Теоретическая модель деловой экономической игры
Обращаясь к первому параграфу, где мы рассматривали возрастные особенности подросткового возраста, еще раз отметим что: 1. Подростковый возраст – один из самых важных в становлении личности. 2. В этом возрасте происходит формирование мировоззрения и картины мира 3. Становление важнейших механизмов ...

Цикличность процесса обучения
Второй общий момент для любого вида обучения – это цикличность вышеозначенного процесса, т.е. повторяемость действий педагога и обучающегося от постановки цели к поиску средств и оценке результата. С одной стороны, цикличность предполагает постановку учителем задач и целей, а также оценку усвоенных ...

Особенности психического развития детей раннего и дошкольного возраста с нарушениями слуха
Нарушения слуха в раннем и дошкольном возрасте оказывают особенно сильное влияние на последующее развитие ребенка. В сложной структуре развития ребенка со сниженным слухом наряду с первичным недостатком слухового анализатора отмечается своеобразие в формировании его речи и других психических процес ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2019 - All Rights Reserved - www.easilyeducation.ru