Понятие творческой задачи

Страница 2

Четвертый этап – практическая проверка гипотезы, реализация изобретения, объективизация результатов.

В схеме структуры творчества А. М. Матюшкина также выделяются как особые этапы нахождение принципа решения, его разработка и реализация. Это важно отметить, поскольку немалое число исследователей творчества не выделяют их.

Ж. Адамар различает следующие четыре этапа математического творчества: подготовка, инкубация, озарение и изложение результатов. На первом этапе происходит сознательная работа – формулирование проблемы, ее обдумывание, поиски путей решения, осознание трудности проблемы. На втором этапе – этапе инкубации – проблема оставлена на некоторое время, происходит бессознательная работа, в результате которой возможно озарение, совершение открытия. А. Пуанкаре показывает необходимость и важность четвертого и последнего этапа, который вновь является сознательным процессом. Это необходимо не только ради очевидной цели изложить устно или письменно полученные результаты, но и для проверки результатов, их завершения, уточнения, оценки собственной работы.

Выделим следующие важные характеристики творчества.

Творчество тесно связано с познавательной деятельностью. Акт творчества – это акт познания мира. Математическое творчество – это форма овладения математическими знаниями.

Необходимым условием начала творческого поиска (исследования) является осознание проблемы, ее постановка; процесс творчества – это процесс решения проблемы. В процессе творчества формулировка проблемы претерпевает изменения, уточняется, ее решение распадается на ряд задач. Разными авторами отмечается этапность, цикличность в решении проблемы, то есть наличие истории творческого поиска.

Средством исследования проблемной ситуации, проблемы, задачи и орудием их разрешения является гипотеза. Гипотеза, или проба решения, даже если она неверна, подготавливает представление о верном пути решения. Гипотеза – основная форма творческого мышления.

Отметим, что творчество в математике связано с получением новых утверждений о свойствах математических объектов (этапом выдвижения и проверки гипотез), формулированием новых теорем и поиском способов доказательства и (лишь на последнем этапе) проведением строгих доказательств. творческий задача древность решение

Творческая деятельность оригинальна. В процессе творчества всегда создается новая вещь (получается новый математический результат), совершается открытие, применяются либо новые средства, способы, либо новые программы деятельности.

Однако все «новое» здесь не означает «никогда ранее не существовавшее» - результат может быть объективно уже известным, но индивидуально, «психологически новым», то есть достигнутым собственными силами (математик может «передоказать» важную теорему, не зная, что она уже кем-то доказана), и в этом случае тоже говорят о творчестве. О. И. Табидзе отмечает, что новизна творчества может быть различной: видимостной (когда субъекту кажется, что он является первооткрывателем, а на самом деле он повторяет уже известное), психологической (когда результат не нов объективно, но достигнут собственными силами субъекта), «региональной» (новой для определенного круга, но не новой для истории человечества) и действительно объективной, общечеловеческой. Творчеством следует считать не всякое открытие, а лишь такое, которое имеет объективно ценностный характер. Творчество – это открытие объективных ценностей. Этим объясняются всеобщее (интерсубъективное) значение результатов творчества и постигающий характер творческой деятельности. Именно объективная ценность движет творческой личностью, определяет особенности творческого процесса. В математическом творчестве объективной ценностью является истина.

Применительно к математическому творчеству учащихся речь идет в большей степени о психологической новизне творчества и лишь в редких случаях можно говорить об объективной новизне.

Страницы: 1 2 3 4

Информация по педагогике:

Принципы работы с песней на уроке иностранного языка
Несмотря на все преимущества использования песни в обучении иностранному языку, учебно-методические комплексы не содержат достаточного количества песенного материала. На начальном и среднем этапах обучения необходим отбор учителем песенного материала, соответствующего практическим целям данного эта ...

Общая характеристика знаменитых задач древности
При изучении окружности древние греки обнаружили задачу, ставшую затем символом неразрешимой проблемы. Это задача квадратуры круга, т.е. построения квадрата, равновеликого данному кругу, с использованием лишь циркуля и линейки. Попытки древнегреческих ученых решить задачу о квадратуре круга путем п ...

Исследование современных педагогических средств обучения в условиях ФГОУ СПО "Уральский Государственный колледж"
Колледж расположен в Металлургическом районе города Челябинска по ул. Мира 96а. Уже более 40 лет этот колледж успешно реализует программы подготовки специалистов в рамках среднего профессионального образования. Директор: Асатулин Рауль Халилович. Специальности СПО на бюджетной основе -профессиональ ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2020 - All Rights Reserved - www.easilyeducation.ru