Методические рекомендации по изучению элементов теории множеств в начальном курсе математике

Образование и педагогика » Изучение элементов теории множеств в начальном курсе обучения математике » Методические рекомендации по изучению элементов теории множеств в начальном курсе математике

Страница 8

Повторение изученного. Устный счет

Задача № 10:

Во сколько раз 12 меньше 96? (В 8раз.)

Сумму чисел 35 и 60 уменьшить в 19 раз. (5.)

От суммы чисел 48 и 36 отнять разность чисел 100 и 76. (60.)

Частное от деления 72 и 4 увеличить в 5 раз. (90.)

К произведению 12 и 5 прибавить 28. (Восемьдесят восемь.)

Задача №11- «Блиц-турнир» с самопроверкой по эталону.

а) Шапка стоит А рублей, а пальто - в 9 раз дороже. Сколько стоят пальто и шапка вместе?

б) Масса арбуза В кг, а масса тыквы — на 2 кг меньше. Какова общая масса арбуза и тыквы?

в) В ведро входит С воды, а в кастрюлю — в7 раз меньше

а) а + а • 9; б) b + (b-2);

в) с- с: 7; г) d-n • 8.

Индивидуальные задания (у доски)

1. Вырази в указанных единицах измерения:

4 дм 5 см =…см 450см = …м…дм

37дм = …м…дм 68см = …дм…см

800см = …дм

2. Реши уравнение:

420: х = 6 х • 40 = 160

6. Самостоятельная работа

1. Арифметический диктант

- Найти произведение чисел 9 и 7.

- Найти разность чисел 87 и 9.

- Найти частное чисел 81 и 9.

- Увеличить 72 на 8.

- Уменьшить 63 в 7 раз.

- Увеличить 12 в 3 раза.

- Уменьшить 56 на 8.

- На сколько 36 больше 6?

- Во сколько раз 48 больше 8?

2. Решите задачу.

Ученики школы интересно провели лето. Из них 30 человек ездили на Черное море, в санаторий - в 4 раза больше, чем на море. В лагере отдыхало - в 2 раза меньше, чем в санатории. А в турпоход сходило столько учащихся, сколько отдыхало в санатории и лагере вместе. Сколько учеников в школе?

3. а) Задайте общим свойством множество С:

С= {Хлеб; масло; соль; крупа; перец; сыр; колбаса},

б) Запишите множество К чисел, кратных 3.

К={ }.

4. Решите примеры.

70 • 5= 63: 21= 630:7 =

90: 6= 88: 4= 560: 80 =

7. Подведение итогов урока

- Приведите примеры элементов пустого множества. (Лошади, пасущиеся на Луне; яблоки и груши, растущие на березе и т. п.)

Домашнее задание

Задание № 4. Пусть А = {0; 1; 2}. Какие из множеств В = (2; 0; 1}, С = {1; 0}, D = {3; 2; 110} равны множеству А, а какие ему не равны? Сделай записи и объясни их.

Методические рекомендации к уроку 3

Основной целью третьего урока является формирование способности к, усвоению равенства множеств, знакомство с понятием пустого множества и его обозначением.

Понятие равенства множеств ничем не отличается от понятия равенства «мешков», с которым учащиеся встречались в первом классе. Равными называются множества, состоящие из одних и тех же элементов. Очевидно, равные множества могут отличаться лишь порядком их элементов, например: {а; b; с)= {с; а; b}

Смысл этого понятия раскрывается в № 1-7. Важно, чтобы, выполняя их, учащиеся обосновывали свои утверждения, а не просто называли ответ. Например, в упражнении № З первое равенство верно, так как оба множества состоят из одних и тех же элементов, но записанных в разном порядке. Поэтому рядом с равенством надо подчеркнуть слово «да» и зачеркнуть «нет». Второе равенство неверно, поскольку в множестве, записанном слева, лишний элемент «треугольник». Третье равенство верно, так как черный квадрат из первого множества поменялся на черный круг, и, значит, множества не равны [21, 8].

Упражнение № 4. Дети делают записи в тетради и устно дают пояснения:

А = В Множества А и В равны, так как они состоят из одних и тех же элементов: 0, 1 и 2.

А≠С Множества А и С не равны, так как в множестве А есть элемент 2, а в множестве С его нет.

А≠ D Множества А и D не равны, так как в множестве А нет элемента 3, а в множестве D он есть.

Упражнение № 5. Каждый ребенок записывает в тетради свой вариант. Можно проговорить с ними, что различных вариантов составления множества А может быть всего 6, а различных вариантов составления множества В - бесконечно много.

В упражнении № 6 следует обратить внимание на упорядоченный перебор вариантов:

{а, б, в} {б, а, в} {в, а, б)

{в, в,,6} {б, в, а} {в, б, а}

На первом месте последовательно записываются сначала а, потом б, потом в, и в каждом случае два остальных элемента переставляются.

В № 7 ставится вопрос о числе элементов множества. Выясняется, что есть множества, содержащие всего лишь 1 элемент (множество хвостов у Мурки, множество носов у Пети) и даже не содержащие ни одного элемента (множество лошадей, пасущихся на Луне). В последнем случае множество называют пустым и обозначают символом:Æ .

Страницы: 3 4 5 6 7 8 9

Информация по педагогике:

Речевое умение, речевые упражнения в обучении монологическому высказыванию
Эти три понятия неразрывно связаны друг с другом. Логическая цепочка связи такова: MB совершается на основе речевого умении, и средством развития речевого умения служат речевые упражнения. Поскольку MB и речевое умение уже рассматривалось выше, обратимся к этапу развития речевого умения и попытаемс ...

Основные направления модернизации технологического образования
Важность технологической культуры молодежи в настоящее время признается во всем мире. ЮНЕСКО реализует международный проект по научной и технологической грамотности для всех «2000+». В школах Западной Европы, Скандинавии, Китая, США и других, экономически развитых и развивающихся странах учащиеся и ...

Возрастные и индивидуальные особенности младших школьников
«Каждый возраст представляет собой качественно особый этап психического развития и характеризуется множеством изменений, составляющих в совокупности своеобразные структуры личности ребенка на данном этапе его развития. В процессе исторического развития изменяются общие социальные условия, в которых ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2019 - All Rights Reserved - www.easilyeducation.ru