В № 8-9 отрабатывается понятие пустого множества. Дети должны обратить внимание на правильный наклон черты в его записи и на то, что это множество записывается без скобок (множество {Æ} не является пустым, оно содержит 1 элемент).
Таким образом, правильное обозначение пустого множества в № 8 лишь второе:Æ. Дома можно предложить учащимся придумать примеры равных и неравных множеств, пример пустого множества.
Настоящее исследование посвящено методике преподавания элементов теории множеств в начальном курсе математики «Школа 2000 .». В соответствии с поставленными задачами были сделаны следующие выводы:
1. Спецификой программы по математике «Школа 2000 .» является то, что среди общих целей математического образования по программе «Школа 2000 .» центральное место занимает развитие абстрактного мышления. Необходимой компонентой абстрактного мышления является логическое мышление – как дедуктивное, в том числе и аксиоматическое, так и продуктивное - эвристическое и алгоритмическое мышление.
В целом, представленная программа содержит довольно большой объем математического и, формально говоря, внематематического содержания. Следует, однако, иметь в виду, что изучаемый материал в определенном смысле разнороден, и изучение различных вопросов проводится, естественно, на разном уровне.
2. Экспериментальное исследование было направлено на выявление сформированности знаний, умений и навыков по теме «Множества». Базой для проведения констатирующего эксперимента была определена Никольская средняя школа №3. В эксперименте участвовали школьники 3 класса в количестве 15 человек. Обучение детей велось по программе «Школа 2000 .».
Знания, умения и навыки выявлялись в процессе самостоятельной работы, целью которой было выявление знаний по теме: «Диаграмма Венна. Знаки Î и Ï».
Нами были выделены критерии и уровни сформированности выполнения заданий самостоятельной работы:
Высокий уровень выполнения заданий характеризовался правильностью выполнения задания; осознанностью выбора правильного варианта; обобщенностью знаний, то есть был способен перенести прием выполнения заданий на новые случаи; автоматизмом (ученик выполнял задание быстро); прочностью (сохранение навыков выполнения заданий на длительное время).
Для среднего уровня выполнения заданий самостоятельной работы характерно небольшое количество ошибок; ученик осознает на основе каких знаний сделано задание, однако не может самостоятельно объяснить, почему сделал именно так, а не иначе; ученик может правильно выполнить задание только в стандартных условиях; ученик не всегда выполняет задания быстро; навыки правильного выполнения заданий сохраняются на короткий срок.
Для низкого уровня выполнения заданий самостоятельной работы свойственно ученик неправильно выполняет то или иное здание, не осознавая правильность его выполнения; медленное выполнение заданий; отсутствие сформированности навыков выполнения заданий.
Таким образом, было выявлено, что младшие школьники обучающиеся по программе «Школа 2000 .» имеют уровень знаний о множествах выше среднего и могут осознанно применять свои знания на практике.
Знакомство с множествами и операциями над ними имеет важное значение для дальнейшего изучения многих вопросов школьной программы по математике и вместе с тем способствует интенсивному развитию мыслительных операций и речи учащихся: дети постоянно должны сравнивать объекты, выявлять в них сходство и различие, классифицировать, строить обобщения, выражать в речи и обосновывать наблюдаемые свойства и отношения.
Данные разработки носят рефлексивный характер, предполагают использование наглядно-предметного и демонстрационного материала, базируясь на принципах деятельности, непрерывности и целостного представления о мире.
Обучение и контроль знаний учащихся осуществляется на основе принципов минимакса, комфортности и вариативности.
Информация по педагогике:
Требования к подбору задач
Любая математическая игра предполагает наличие задач, которые должны решить школьники, участвующие в игре. А каковы требования к их подбору? У разных видов игр они различны. Если взять математические мини-игры, то задачи входящие в них могут быть как по какой-нибудь теме школьной программы, так и н ...
Описание логики решения творческих задач
Логика постановки творческих задач не соответствует той логике, в которой они возникали в истории. Сначала детям предлагаются простые задачи, с которыми учащиеся легко справляются, их решение позволяет учащимся включиться в исследовательскую работу, поставить проблему существования общего решения з ...
Педставления умственно отсталого ребенка о природе
Ориентация дошкольного учреждения на общечеловеческие ценности значительно меняет приоритеты в воспитании, направляя основное внимание на комплексное развитие личности ребенка. Одной из важнейших составляющих этого процесса является осознание ребенком законов окружающего мира природы и способах ...
Дистанционное обучение
Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.