Анализ средств решения знаменитых задач древности

Страница 8

Таким образом, чтобы доказать неразрешимость задачи о квадратуре круга при помощи циркуля и линейки, необходимо установить невозможность указанными средствами построить произведение данного отрезка R на число , а для этого достаточно показать, - что или число π есть число трансцендентное. Заслуга Ф. Линдемана как раз и заключается в том, что он впервые в мировой науке вполне строго доказал, что π есть число трансцендентное, и тем самым окончательно установил невозможность решения задачи о квадратуре круга с помощью циркуля и линейки. Вот почему Ф. Линдемана называют «победителем числа π».

Решение Бинга

Выше было показано, что задача о квадратуре круга неразрешима при помощи циркуля и линейки, однако она становится, вполне разрешимой, если специально для нее расширить средства построения, если воспользоваться некоторыми специальными кривыми (например, квадратрисой). Средствами циркуля и линейки можно решить задачу о квадратуре круга только приближенно.

Ниже приведем одно из приближенных решений задачи о квадратуре круга, основанное на использовании треугольника Бинга. Этот способ был предложен в 1836 г. русским инженером Бингом и очень удобен для практических целей.

Рассмотрим треугольник АВС (рис. 11), вписанный в круг, квадратура которого находится с таким расчетом, чтобы наибольшая сторона треугольника была диаметром. Обозначим угол CAB через а, а хорду АС через х. Подберем угол а так, чтобы отрезок х был стороной квадрата, равновеликого данному кругу. Для этой цели воспользуемся соотношением

,

где R — радиус круга.

Так, как площадь квадрата со стороной х должна быть равновелика площади круга, то будем иметь или 4R2 cos2 a = πR2, откуда cos2 a =π/4, cos a =1/2 = 0, 886. По таблицам находим a=27°36'.

Итак, проводя в данном круге хорду под углом 27°36' к диаметру, мы сразу получим искомую сторону квадрата, равновеликого данному кругу. Легко догадаться, что рассмотренный треугольник АВС и есть треугольник Бинга.

Решение Динострата при помощи квадратрисы

Пусть ANB – четверть окружности, расположенной в квадранте АОВ, а АМС – квадратриса этого квадранта. Далее Динострат воспользовался соотношением, которое позднее было доказано Паппом Александрийским: АNВ : ОВ = ОВ : ОС, где С – конечная точка квадратрисы.

Підпис:

Поскольку ОА = ОВ = R, то ANB : R = R : OC, или

ANB = R2/OC. Откуда длина окружности радиуса R равняется 4R2/OC. Т.о. длина окружности определена. Чтобы построить квадрат равновеликий кругу, Динострат воспользовался теоремой: площадь круга равна площади треугольника, основание которого равно окружности, а высота – радиусу круга. Уравнение квадратрисы:

.

Для понимания рассуждений о неразрешимости задачи о квадратуре круга школьники должны знать формулу площади круга, изучаемую в девятом классе. Эту формулу вполне возможно объяснить детям на дополнительном занятии раньше. Следующее необходимое знание – это знание об иррациональных числах, изучаемое в восьмом классе. Также нужны дополнительные знания из теории геометрических построений о том, на какое число и при каких условиях можно умножить данный отрезок.

Для возможности построения квадратуры круга при помощи треугольника Бинга обязательно нужно изучение описанной окружности, необходимо знать ее определение и теорему, что около любого треугольника можно описать окружность. Этот материал находится в курсе геометрии восьмого класса. В девятом классе изучается косинус острого угла прямоугольного треугольника, а это также необходимо для решения задачи. Также детям должно быть известно иррациональное число , они должны уметь приближенно вычислять , и пользоваться тригонометрическими таблицами Брадиса. Все это изучается в восьмом классе. Для переноса этой задачи в седьмой класс, необходимо дать детям все эти сведения на дополнительных занятиях.

Страницы: 3 4 5 6 7 8 9

Информация по педагогике:

Использование техногенных ресурсов
Структура ресурсов ванадия в нашей стране определяется наличием больших запасов ванадийсодержащих титаномагнетитовых руд. В связи с высокой стоимостью переработки и сложностью технологической схемы передела этих руд в настоящее время стала актуальной задача разработки технологий и создания производ ...

Система упражнений в организации обучения чтению текстов лингвострановедческого содержания и этапы работы с ними
В методике преподавания иностранного языка получила распространение идея обучения иноязычной культуре на основе концепции диалога культур. Авторский коллектив под руководством В.ГТ. Кузовлева предпринял попытку создать УМК, который через систему познавательных, учебных, развивающих и воспитательных ...

Компетентность как новый образовательный результат
В предыдущем параграфе мы пришли к следующим выводам: во-первых, социальный контекст подросткового возраста крайне сложен и противоречив, во-вторых, несмотря на то, что контекстом подросткового возраста является личностное самоопределение, главные идентификационные потребности современных подростко ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2025 - All Rights Reserved - www.easilyeducation.ru