Анализ средств решения знаменитых задач древности

Страница 6

.

Обозначая NC через х и MB через у, находим .

Следовательно, х = NC и будет найденной величиной искомого ребра удвоенного куба. Делосская задача решена.

Решение Менехма

1) Решение задачи об удвоении куба с ребром а сводится к рассмотрению двух парабол:

Решая эти уравнения, как систему относительно x, будем иметь

Підпис:

Получаем 2 вещественных корня . Первый корень не удовлетворяет условию задачи. Следовательно, искомым решением будет второй корень, т.е. ребро удвоенного куба равняется .

Путем построения графиков обеих парабол искомое ребро куба получается, как ненулевая абсцисса точки пересечения парабол:

2) Задача об удвоении куба сводится к решению двух уравнений, из которых одно – уравнение гиперболы, а другое – уравнение параболы

.

Решая совместно относительно х, получим , или . Следовательно, . Путем построения графиков искомое ребро удвоенного куба находится, как абсцисса пересечения гиперболы с параболой:

Підпис:

Задачу об удвоении куба можно предлагать не ранее чем в восьмом классе, т.к. основным в решении является понятие иррационального числа. Кроме того, решение задачи опирается на изучаемые в восьмом классе теорему Пифагора и решение рациональных и иррациональных уравнений. Этот материал занимает прочное место и большой объем в курсе математики в восьмом классе, и дать его детям раньше представляет определенную трудность.

Учащиеся должны знать, что такое иррациональное число, что оно не выражается конечной или бесконечной периодической дробью, уметь извлекать квадратный корень, иметь представления о решении рациональных уравнений, должны знать формулировку теоремы Пифагора, уметь использовать ее.

Из того, что для построения ребра удвоенного куба необходимо построить , следует, что дети должны уметь извлекать корни n-й степени, в частности, корень кубический. Этот материал изучается в девятом классе.

Прежде, чем давать в рассмотрение задачу об удвоении куба, необходимо убедиться, что детям известны возможные построения циркулем и линейкой. Если же этого нет, то нужно обязательно предоставить детям возможность изучить этот материал, самостоятельно или с помощью учителя. Без этого знания учащиеся не смогут понять, почему при помощи циркуля и линейки построить нельзя. А это необходимое условие для дальнейшего продвижения в решении задачи.

Теорема неразрешимости не изучается в курсе школьной математики, поэтому ее формулировку и пояснение ее смысла следует давать детям дополнительно. Это возможно не ранее, чем в девятом классе, так как в теореме идет речь о кубическом уравнении, не имеющем рациональных корней.

Для понимания рассуждений о построении «вставок» требуется знание геометрической прогрессии, пропорций и их свойств. Это также указывает на невозможность изучения задачи до девятого класса, потому что именно в девятом классе проходят геометрическую прогрессию.

О геометрической прогрессии нужно знать: ее определение и следующее свойство – отношение двух, следующих друг за другом, членов геометрической прогрессии постоянно. О пропорции также нужно знать определение и свойство – произведение крайних членов пропорции равно произведению ее средних членов.

Страницы: 1 2 3 4 5 6 7 8 9

Информация по педагогике:

Система физического воспитания в дошкольных учреждениях: цели, задачи, средства
Система физического воспитания в дошкольных учреждениях представляет собой единство цели, задач, средств, форм и методов работы, направленных на укрепление здоровья и всестороннее физическое развитие детей. Одновременно она является подсистемой, частью общегосударственной системы физического воспит ...

Организационно-технологические модели дистанционного образования
Единичная медиа - использование какого-либо одного средства обучения и канала передачи информации. Например, обучение через переписку, учебные радио- или телепередачи. В этой модели доминирующим средством обучения является, как правило, печатный материал. Практически отсутствует двусторонняя коммун ...

Общая характеристика знаменитых задач древности
При изучении окружности древние греки обнаружили задачу, ставшую затем символом неразрешимой проблемы. Это задача квадратуры круга, т.е. построения квадрата, равновеликого данному кругу, с использованием лишь циркуля и линейки. Попытки древнегреческих ученых решить задачу о квадратуре круга путем п ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2020 - All Rights Reserved - www.easilyeducation.ru