Не в состоянии решить эту задачу так, как требовал оракул, делосцы обратились за помощью к математику и философу Платону. Но он уклончиво ответил им: «Боги, вероятно, недовольны вами за то, что вы мало занимаетесь геометрией». Однако сам Платон не сумел решить указанной задачи циркулем и линейкой. С того времени эта задача и стала именоваться «делосской» (иногда ее неправильно называют «делийской»).
Удвоение квадрата
Древние греки сравнительно легко решили задачу об удвоении квадрата. Для этого надо было уметь строить при помощи циркуля и линейки корень квадратный из двух. Действительно, если сторона данного квадрата равняется а, а сторона искомого квадрата х, то, согласно условию задачи, будем иметь , откуда
.
Следовательно, в качестве х надо взять диагональ данного квадрата, которая по теореме Пифагора как раз и будет равняться (рис. 5).
Сведение задачи к нахождению
Обобщая задачу об удвоении квадрата, древние греки перешли к рассмотрению задачи об удвоении куба и также стремились решить ее при помощи циркуля и линейки. Оказалось, что решение задачи об удвоении куба сводится к построению циркулем и линейкой корня кубического из двух. Действительно, если ребро данного куба положить равным а, а ребро искомого куба х, то, согласно условию задачи, будем иметь
х3 = 2а3, откуда .
Однако все старания построить циркулем и линейкой не увенчались успехом. И трудно сказать, как долго еще продолжались бы эти попытки, если бы, наконец, в первой половине XIX в. не было доказано, что при помощи только циркуля и линейки
построить нельзя.
Доказательство неразрешимости
В современной математике доказано, что кубическое уравнение с рациональными коэффициентами, не имеющее рациональных корней, не может быть разрешимо в квадратных радикалах, т. е. ни один из корней этого уравнения не может быть построен при помощи циркуля и линейки.
Доказательство этой теоремы в приложении 1.
Выше было показано, что задача об удвоении куба сводится к решению кубического уравнения , где а — ребро данного куба, х — искомое ребро удвоенного куба.
Приняв для простоты длину ребра данного куба за 1, получим уравнение х3 — 2=0. Это уравнение с рациональными коэффициентами, как легко убедиться, не может иметь рациональных корней. Следовательно, по предыдущей теореме задача об удвоении куба не может быть решена при помощи циркуля и линейки.
Первым из ученых, открыто высказавшим мнение о невозможности построения посредством циркуля и линейки отрезка, равного , был французский ученый Р. Декарт. В 1637 г. он высказал предположение, что корень кубический из некубического рационального числа есть вообще иррациональность, не приводящаяся к конечному числу действий извлечения квадратного корня.
Строгое доказательство неразрешимости задачи об удвоении куба при помощи циркуля и линейки было дано французским математиком П. Венцелем в 1837 г.
Вклад в решение Гиппократа Хиосского
Одним из первых древнегреческих геометров, сделавших значительный шаг в решении задачи об удвоении куба путем привлечения к циркулю и линейке дополнительных средств, был Гиппократ Хиосский (V в. до н. э.).
Решение стереометрической задачи, какой является делосская задача об удвоении куба, Гиппократ Хиосский свел к рассмотрению планиметрической задачи, заключающейся в отыскании двух средних, пропорциональных между двумя данными отрезками, из которых второй в два раза больше первого. Т. е. к нахождению таких двух отрезков х и у, которые, будучи «вставлены» между двумя данными а и 2а, составили бы вместе с ними геометрическую прогрессию: а, х, у, 2а.
Информация по педагогике:
Площадь круга
Формула для вычисления площади круга вводится в VI классе. Перед тем, как записать формулу для площади круга, учащиеся выясняют зависимость между длиной окружности и ее диаметром. Важно, обратить внимание учащихся на отношение , ( – длина окружности, а – ее диаметр) и показать, что для любой окружн ...
Роль медиаобразования в формировании информационно-правовой культуры
современной молодежи
Развитие медиаобразования в России в XXI веке сопровождается вхождением человечества в информационное общество, одним из неотъемлемых составляющих которого является «общество знаний». Человек общества знаний должен «соблюдать права и основные свободы человека, включая свободу выражения своего мнени ...
Психологическая сущность дошкольного возраста
Все родители на вопрос о том, каким бы они хотели видеть своего ребенка, обычно отвечают: «Честным», «Добрым», «Умным», «Хорошим человеком» и т. д. Что же нужно сделать для того, чтобы ребенок вырос таким? Прежде всего — нужно его любить. На первый взгляд подобное утверждение может показаться бана ...
Дистанционное обучение
Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.