Методика введения средств решения знаменитых задач древности

Страница 5

При таком расположении двух наугольников по данным точкам С и D найдем на прямых m и n точки А и В. х = ОВ и есть построенное ребро удвоенного куба.

Вопросы и задания.

Доказать лемму Платона.

Каким образом с помощью прибора Платона находятся «вставки»?

Доказать, что куб с ребром х в два раза больше по объему, чем куб с ребром а , т.е. х 3 = 2 а 3 (воспользоваться леммой).

Затем решается исходная задача, с помощью прибора Платона строится куб, в два раза больший по объему, чем куб с ребром:

А) 1, В) 4,

Б) 2, Г) 6.

Решение Эратосфена

Прибор Эратосфена носит название «мезолябий», что в переводе означает «уловитель», т. е. уловитель двух средних величин («вставок»), из которых одна составляет искомую сторону удвоенного куба.

Мезолябий Эратосфена состоит из двух параллельно расположенных реек m и n, расстояние между которыми равняется удвоенной стороне куба, т. е. 2а.

К этим рейкам прикреплены три равных прямоугольных треугольника, из которых один, самый левый, смонтирован неподвижно, а другие два могут перемещаться вдоль пазов, устроенных в рейках, причем на верхнюю рейку опираются равные катеты, а на нижнюю — их противоположные вершины (см. рис.).

Решение

На катете HD самого правого подвижного треугольника откладываем отрезок DQ = а. Теперь двигаем подвижные треугольники с таким расчетом, чтобы точки пересечения катета одного треугольника с гипотенузой следующего за ним (М и N) расположились бы на одной прямой с Е и Q. х = NC и будет найденной величиной искомого ребра удвоенного куба.

Вопросы и задания.

Как устроен прибор Эратосфена?

Каким образом с помощью мезолябия находятся «вставки»?

Доказать, что куб с ребром х в два раза больше по объему, чем куб с ребром а , т.е. х 3 = 2 а 3.

С помощью прибора Эратосфена строится куб, в два раза больший по объему, чем куб с ребром:

А) 1, В) 3,

Б) 2, Г) 5.

Решение Менехма

1) Решение задачи об удвоении куба с ребром а сводится к рассмотрению двух парабол:

2) Задача об удвоении куба сводится к решению двух уравнений, из которых одно – уравнение гиперболы, а другое – уравнение параболы

Вопросы и задания.

Каким образом задача сведена к рассмотрению функций?

Построить графики функций.

Найти с помощью графиков ребро удвоенного куба.

Задача о квадратуре круга

Решение Бинга

Приведем одно из решений задачи о квадратуре круга, основанное на использовании треугольника Бинга. Этот способ был предложен в 1836 г. русским инженером Бингом и очень удобен для практических целей.

Рассмотрим треугольник АВС (см. рис.), вписанный в круг, квадратура которого находится с таким расчетом, чтобы наибольшая сторона треугольника была диаметром. Обозначим угол CAB через а, а хорду АС через х. Подберем угол а так, чтобы отрезок х был стороной квадрата, равновеликого данному кругу. Для этой цели воспользуемся соотношением

,

где R — радиус круга.

Так, как площадь квадрата со стороной х должна быть равновелика площади круга, то будем иметь или 4R2 cos2 a = πR2, откуда cos2 a =π/4, cos a =1/2 = 0, 886. По таблицам находим a=27°36'.

Страницы: 1 2 3 4 5 6

Информация по педагогике:

Реализация программы развития познавательных способностей младших школьников во внеурочной деятельности
С детьми экспериментальной группы мы начали проводить занятия, направленные на развитие познавательных способностей во внеурочной деятельности через использование модульных технологий. Занятия с применением модульной технологии проводятся после изучения на уроках математики определенного раздела те ...

Профессиональные позиции педагога
Позиция педагога – это система тех интеллектуальных, волевых и эмоционально-оценочных отношений к миру, педагогической деятельности в частности, которые являются источником его активности. Она определяется, с одной стороны, теми требованиями, ожиданиями и возможностями, которые предъявляет и предос ...

Методы и методики изучения особенностей памяти у детей дошкольного возраста с нарушениями слуха
Цель констатирующего эксперимента: изучение особенностей памяти детей дошкольного возраста с нарушением слуха с их нормально развивающими сверстниками. Для достижения поставленной цели предстояло решить следующие задачи: Апробировать комплекс психодиагностических методик для выявления особенностей ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2020 - All Rights Reserved - www.easilyeducation.ru