Методика введения средств решения знаменитых задач древности

Страница 5

При таком расположении двух наугольников по данным точкам С и D найдем на прямых m и n точки А и В. х = ОВ и есть построенное ребро удвоенного куба.

Вопросы и задания.

Доказать лемму Платона.

Каким образом с помощью прибора Платона находятся «вставки»?

Доказать, что куб с ребром х в два раза больше по объему, чем куб с ребром а , т.е. х 3 = 2 а 3 (воспользоваться леммой).

Затем решается исходная задача, с помощью прибора Платона строится куб, в два раза больший по объему, чем куб с ребром:

А) 1, В) 4,

Б) 2, Г) 6.

Решение Эратосфена

Прибор Эратосфена носит название «мезолябий», что в переводе означает «уловитель», т. е. уловитель двух средних величин («вставок»), из которых одна составляет искомую сторону удвоенного куба.

Мезолябий Эратосфена состоит из двух параллельно расположенных реек m и n, расстояние между которыми равняется удвоенной стороне куба, т. е. 2а.

К этим рейкам прикреплены три равных прямоугольных треугольника, из которых один, самый левый, смонтирован неподвижно, а другие два могут перемещаться вдоль пазов, устроенных в рейках, причем на верхнюю рейку опираются равные катеты, а на нижнюю — их противоположные вершины (см. рис.).

Решение

На катете HD самого правого подвижного треугольника откладываем отрезок DQ = а. Теперь двигаем подвижные треугольники с таким расчетом, чтобы точки пересечения катета одного треугольника с гипотенузой следующего за ним (М и N) расположились бы на одной прямой с Е и Q. х = NC и будет найденной величиной искомого ребра удвоенного куба.

Вопросы и задания.

Как устроен прибор Эратосфена?

Каким образом с помощью мезолябия находятся «вставки»?

Доказать, что куб с ребром х в два раза больше по объему, чем куб с ребром а , т.е. х 3 = 2 а 3.

С помощью прибора Эратосфена строится куб, в два раза больший по объему, чем куб с ребром:

А) 1, В) 3,

Б) 2, Г) 5.

Решение Менехма

1) Решение задачи об удвоении куба с ребром а сводится к рассмотрению двух парабол:

2) Задача об удвоении куба сводится к решению двух уравнений, из которых одно – уравнение гиперболы, а другое – уравнение параболы

Вопросы и задания.

Каким образом задача сведена к рассмотрению функций?

Построить графики функций.

Найти с помощью графиков ребро удвоенного куба.

Задача о квадратуре круга

Решение Бинга

Приведем одно из решений задачи о квадратуре круга, основанное на использовании треугольника Бинга. Этот способ был предложен в 1836 г. русским инженером Бингом и очень удобен для практических целей.

Рассмотрим треугольник АВС (см. рис.), вписанный в круг, квадратура которого находится с таким расчетом, чтобы наибольшая сторона треугольника была диаметром. Обозначим угол CAB через а, а хорду АС через х. Подберем угол а так, чтобы отрезок х был стороной квадрата, равновеликого данному кругу. Для этой цели воспользуемся соотношением

,

где R — радиус круга.

Так, как площадь квадрата со стороной х должна быть равновелика площади круга, то будем иметь или 4R2 cos2 a = πR2, откуда cos2 a =π/4, cos a =1/2 = 0, 886. По таблицам находим a=27°36'.

Страницы: 1 2 3 4 5 6

Информация по педагогике:

Условия активизации профессионального роста руководителя образовательного учреждения
Профессиональное становление и рост руководителя образовательного учреждения сложный процесс, требующий системного анализа личности, как в структурном, так и в динамическом аспектах. Термин “профессиональное развитие”, “профессиональное становление личности” стал предметом исследования многих автор ...

Формы взаимодействия семьи по обучению детей старшего дошкольного возраста подвижным играм
Ни одна, даже самая лучшая физкультурно-оздоровительная программа не сможет дать полноценных результатов, если она не реализуется совместно с семьей, если в дошкольном учреждении не создано детско-взрослое общество (детей-родителей-педагогов), для которого характерно содействие друг другу, учет воз ...

Организация и методика проведения опытно-экспериментальной работы
Для определения эффективности предложенной технологии нами был использован педагогический эксперимент. Данный метод исследования в нашей работе является основным, поскольку его применение позволяет сделать вывод о целесообразности использования разработанной нами технологии метода проектов в учебно ...

Дистанционное обучение

Дистанционное обучение

Дистанционную форму обучения специалисты по стратегическим проблемам образования называют образовательной системой 21 века.

Навигация

Copyright © 2019 - All Rights Reserved - www.easilyeducation.ru